Fall

Proton-Coupled Electron Transfer by Copper-Oxygen Species Relevant to Enzyme Intermediates

Characterization of copper intermediates in enzymes and other catalysts that attack strong C-H bonds is important for unraveling oxidation catalysis mechanisms and, ultimately, designing new, more efficient catalytic systems. New insights into the nature of such intermediates may be obtained through the design, synthesis, and characterization of copper-oxygen complexes. Two key proposed examples contain [CuO2]+ and [CuOH]2+ cores, which have been suggested as possible reactive intermediates in monocopper enzymes such as lytic polysaccharide monooxygenase.

Graham Lecture: Increasing Access to Global Healthcare through Process Intensification

Abstract:   Access to global public healthcare is impacted by many technical, economic, and social factors. It is widely recognized that the resources required to deliver and improve global public health are currently constrained.  A powerful way to increase access is to lower the cost of products and services that have already proven to be effective.  Currently, the cost of producing a wide range of pharmaceutical products is higher than it needs to be.

Pages

Subscribe to RSS - Fall