Seminars Archive

Fall 2021

Dr. Robert Gilliard | University of Virginia

Dr. Robert Gilliard | University of Virginia

Professor Jill Venton
Hosted by Professor Jill Venton
Friday, October 15, 2021

Burger Lecture | Dr. Dirk Trauner | New York University

Burger Lecture | Dr. Dirk Trauner | New York University

Professor Mike Hilinski and Professor Kateri DuBay
Hosted by Professor Mike Hilinski and Professor Kateri DuBay
Friday, October 8, 2021

Dr. Javier Grajeda | Eastman

Dr. Javier Grajeda | Eastman

Professor Brent Gunnoe
Hosted by Professor Brent Gunnoe
Friday, October 1, 2021

Dr. Kara Bren | University of Rochester

Dr. Kara Bren | University of Rochester

Professor Charles Machan
Hosted by Professor Charles Machan
Friday, September 24, 2021

Dr. Ryan Fortenberry | University of Mississippi

Dr. Ryan Fortenberry | University of Mississippi

Professor Robin Garrod
Hosted by Professor Robin Garrod
Friday, September 17, 2021

Special Seminar

Special Seminar

Multiplexed Approach to Broadband Rotational Spectroscopy: From Complex Gas Mixtures to Chiral Analysis | Dr. Alicia O. Hernandez-Castillo | Fritz Haber Institute, Max Plank Society, Germany

Join Zoom Meeting
https://virginia.zoom.us/j/98013264905?pwd=U1R1VHpxRGVwQStCMVR3alQyWldxdz09

Meeting ID: 980 1326 4905
Passcode: 105967

Multiplexed Approach to Broadband Rotational Spectroscopy: From Complex Gas Mixtures to Chiral Analysis | Dr. Alicia O. Hernandez-Castillo | Fritz Haber Institute, Max Plank Society, Germany
Monday, September 13, 2021

Dr. Charles Machan | University of Virginia

Dr. Charles Machan | University of Virginia

Professor Dean Harman
Hosted by Professor Dean Harman
Friday, September 10, 2021

Special Seminar

Special Seminar

Designed hydrophobic gaskets enable the formation of transient water wires for proton channel selectivity | Dr. Huong Kratochvil | University of California, San Francisco

UVA Rising Star in Chemistry Postdoctoral Seminar series

Join Zoom Meeting
https://virginia.zoom.us/j/93076274676?pwd=N3FSdCsrY2FXZ0c2V2RpOXBxdHkvQT09

Meeting ID: 930 7627 4676
Passcode: 112284

 

 

Designed hydrophobic gaskets enable the formation of transient water wires for proton channel selectivity | Dr. Huong Kratochvil | University of California, San Francisco
Hosted by UVA Rising Star in Chemistry Postdoctoral Seminar series
Thursday, September 9, 2021

Special Seminar

Special Seminar

Tuning the Reactivity Landscape of Metalloenzymes: From Active Site Modifications to Long-range Dynamic Effects | Dr. Paulo Zaragoza |University of California, Berkeley

UVA Rising Star in Chemistry Postdoctoral Seminar series

Join Zoom Meeting
https://virginia.zoom.us/j/91919004812?pwd=R0lGUGsvM2I4Y3dSVU85Nm9tQ0VXUT09

Meeting ID: 919 1900 4812
Passcode: 290863

Tuning the Reactivity Landscape of Metalloenzymes: From Active Site Modifications to Long-range Dynamic Effects | Dr. Paulo Zaragoza |University of California, Berkeley
Hosted by UVA Rising Star in Chemistry Postdoctoral Seminar series
Tuesday, September 7, 2021

Dr. Brandi Cossairt | University of Washington

Dr. Brandi Cossairt | University of Washington

Professor Sen Zhang
Hosted by Professor Sen Zhang
Friday, September 3, 2021

Special Seminar

Special Seminar

Modulation of MALT1 pre-mRNA structure by hnRNP proteins regulates T-cell activation | Dr. Alicia (Jonesy) Jones | Helmholtz Zentrum München, Munich, Germany

UVA Rising Star in Chemistry Postdoctoral Seminar series

Join Zoom Meeting
https://virginia.zoom.us/j/98531118370?pwd=dUVJd1Ria2QzdzR2MjZkcjJkM2pyUT09

Meeting ID: 985 3111 8370 Passcode: 103820

Modulation of MALT1 pre-mRNA structure by hnRNP proteins regulates T-cell activation | Dr. Alicia (Jonesy) Jones | Helmholtz Zentrum München, Munich, Germany
Hosted by UVA Rising Star in Chemistry Postdoctoral Seminar series
Thursday, September 2, 2021

Dr. Sen Zhang | University of Virginia

Dr. Sen Zhang | University of Virginia

Professor Jill Venton
Hosted by Professor Jill Venton
Friday, August 27, 2021

Spring 2022

Dr. Sharon Glotzer | University of Michigan

Dr. Sharon Glotzer | University of Michigan

Professor Kateri DuBay
Hosted by Professor Kateri DuBay
Thursday, June 24, 2021

Spring 2021

Burger Lecture | Harnessing Chemistry to Understand the Roles of Glycans in Neuroplasticity

Burger Lecture | Harnessing Chemistry to Understand the Roles of Glycans in Neuroplasticity

Dr. Linda Hsieh-Wilson | CalTech |

Professor Ken Hsu

The field of chemical neurobiology is providing insights into the molecules and interactions involved in neuronal development, sensory perception, and memory storage. In this talk, I will describe the development of chemical tools to understand how glycosaminoglycans contribute to neuroplasticity – the ability of the brain to adapt and form new neural connections. By combining synthetic organic chemistry, biochemistry, cell biology, and neurobiology, we have shown that specific sulfation motifs within these polysaccharides regulate signaling events that underlie processes such as axon regeneration, synaptic plasticity, and the formation of neural circuits.  

Dr. Linda Hsieh-Wilson | CalTech |
Hosted by Professor Ken Hsu
Friday, April 23, 2021

ACS Poster Session

ACS Poster Session

Friday, April 16, 2021

Challenges and Opportunities in Chemical Separations with Porous Materials

Challenges and Opportunities in Chemical Separations with Porous Materials

Dr. Michael Katz | Memorial University of Newfoundland |

Diane Dickie, Ph.D., Senior Scientist

Challenges and Opportunities in Chemical Separations with Porous Materials

Porous materials such as metal-organic frameworks have been extensively studied for applications in gas-adsorption, catalysis, and chemical separation (to name a few). With particular focus on separations, one of the long-term goals in my research program is to implement porous materials in real-world applications. For the research team to be successful, it is critical to address these challenges from a top-down approach. Factoring in issues such as partial pressure, overall gas composition, and regeneration need be at the forefront of the research. With that in mind, the presentation will explore how porous materials can be designed to address the challenges associated with chemical separations.

Dr. Michael Katz | Memorial University of Newfoundland |
Hosted by Diane Dickie, Ph.D., Senior Scientist
Friday, April 9, 2021

Olfactory Receptors in Vascular Macrophages Drive Atherosclerosis by NLRP3-Dependent IL-1 Production

Olfactory Receptors in Vascular Macrophages Drive Atherosclerosis by NLRP3-Dependent IL-1 Production

Klaus Ley, M.D. | La Jolla Institute for Immunology | Division Head/Professor Center for Autoimmunity and Inflammation

Professors Jill Venton and David Cafiso

Atherosclerosis is an inflammatory disease of the arterial wall driven by macrophages and other immune cells. Olfactory receptors (OLFRs) are G-protein coupled receptors expressed primarily in olfactory epithelium and are responsible for the sense of smell. OLFRs expressed in multiple extra-nasal tissues have been implicated in diverse biological processes. Here we show that mouse vascular macrophages express many olfactory receptors including Olfr2 (also known as I7), a receptor for octanal. They also express Rtp1, Rtp2, Adcy3, Gnal and the cyclic nucleotide-gated ion channel subunits Cnga1, 2, 3, 4 and Cngb1, accessory molecules needed for Olfr signaling and trafficking. Ligation of Olfr2 and its human orthologue (OR6A2), expressed in human atherosclerotic plaque and in human monocyte-derived macrophages, activates the NLRP3 inflammasome and, in synergy with LPS, induces secretion of IL-1α and β. Knocking out Olfr2 and Nlrp3 in mouse or knocking down OR6A2 in human macrophages abolishes IL-1β secretion in response to octanal. Mouse and human blood plasma contain micromolar levels of octanal, which are positively correlated with cholesterol and triglyceride levels. Boosting octanal levels exacerbates and knocking out Olfr2 significantly reduces atherosclerosis in the aortic arch and root. Our findings suggest that inhibitors of OR6A2 are promising targets for drug development to prevent and treat atherosclerosis-based cardiovascular diseases. 

Klaus Ley, M.D. | La Jolla Institute for Immunology | Division Head/Professor Center for Autoimmunity and Inflammation
Hosted by Professors Jill Venton and David Cafiso
Friday, April 2, 2021

Dr. Robert Kennedy | University of Michigan

Dr. Robert Kennedy | University of Michigan

Professors Rebecca Pompano and Jill Venton

The Nanoliter Lab: Droplet Microfluidics for Screening and Sensing

Manipulating samples as droplets within microfluidic devices has emerged as an interesting approach for chemical analysis and screening. In segmented flow, one embodiment of this technology, nanoliter samples are manipulated in microfluidic channels as plugs separated by an immiscible fluid, such as air or fluorinated oil. These plugs serve as miniature test-tubes in which reactions can be performed at high throughput. Microfluidic tools have been developed to split, dilute, extract, and filter such plugs at rates >10 samples/s. We have developed methods to analyze plug content by electrophoresis and mass spectrometry (MS). A natural application of this technology is for high throughput screening. By coupling droplet manipulation with MS detection, it is possible to greatly reduce reagent consumption and eliminate the need for fluorescent labels or coupled reactions. The technology and application to screens of deacetylase reactions and protein-protein interactions will be presented. A more involved screening allows for monitoring reactions of enzyme variants to identify new biocatalysts. Droplet technology can also be used for chemical monitoring or sensing applications. In this approach samples emerging from a miniaturized sampling device are segmented for later analysis. We have used this method to monitor neurotransmitter dynamics in the brain. The technology and application to studies of neurotransmission in a Huntington’s disease models will be demonstrated. 

Hosted by Professors Rebecca Pompano and Jill Venton
Friday, March 26, 2021

2021 Hecht Lecture

2021 Hecht Lecture

Dr. Frank Bennett | Ionis Pharmaceuticals

Dr. Sidney Hecht

ABSTRACT

Antisense Oligonucleotide Therapeutics for Neurological Diseases

Antisense oligonucleotides (ASOs) are synthetic, chemical modified nucleic acid analogs designed to bind to RNA by Watson-Crick base paring and upon binding, modulate the function of the targeted RNA. There are a variety of mechanisms by which ASOs can modulate RNA function dependent on the chemical design of the ASO, the type of RNA and where on the RNA the ASO is designed to bind. Both protein coding, as well as non-coding RNAs, can be targets of ASO based drugs, significantly broadening therapeutic targets for drug discovery compared to small molecules and protein-based therapeutics. The recent approval of nusinersen (Spinraza™) as a treatment for spinal muscular atrophy (SMA) and inotersen (Tegsedi) for polyneuropathy of hereditary transthyretin-mediated amyloidosis (hATTR)  validates the utility of antisense drugs for the treatment of neurological  diseases. A summary of the progress, lessons learned and future challenges applying antisense technology for neurological diseases will be provided.

Dr. Frank Bennett | Ionis Pharmaceuticals
Hosted by Dr. Sidney Hecht
Wednesday, March 24, 2021

Graduate Visitation Weekend 3/18 - 3/19

Graduate Visitation Weekend 3/18 - 3/19

Friday, March 19, 2021

Membrane Partitioning by and for Cell Wall Synthesis

Membrane Partitioning by and for Cell Wall Synthesis

Dr. Sloan Siegrist | University of Massachusetts |

Professor Marcos Pires

Membrane Partitioning by and for Cell Wall Synthesis

Diffuse, sidewall patterning of cell wall peptidoglycan synthesis by the actin homolog MreB enables model organisms like Escherichia coli and Bacillus subtilis to maintain rod shape. Mycobacteria are also rods but grow from their poles and lack MreB. It is unclear how mycobacteria establish and propagate rod morphology. My lab has investigated the roles of the essential, cytoskeletal-like protein DivIVA (Wag31) and of inner membrane partitioning in polar growth and envelope assembly. Our work with the model organism M. smegmatis suggests that the membrane-cell wall axis is a self-organizing system in which DivIVA-directed cell wall synthesis organizes the inner membrane, and an organized inner membrane in turn makes cell wall synthesis more efficient and precise. These findings complement what has been reported for eukaryotic cell membranes, which can be partitioned by pinning to cytoplasmic structures such as the actin cytoskeleton and to external structures like extracellular matrix and cellulose. They are also congruent with the literature on model lipid bilayers, which can be phase separated by adhesive forces.

Dr. Sloan Siegrist | University of Massachusetts |
Hosted by Professor Marcos Pires
Friday, March 12, 2021

Dr. Dan Mindiola | University of Pennsylvania

Dr. Dan Mindiola | University of Pennsylvania

Professor Robert Gilliard

Metal-Ligand Multiple Bonds: Catalytic Dehydrogenation of Volatile Alkanes, Methane Olefination, and Super Bases

Abstract. Converting natural resources such as methane and ethane, the main components of natural and shale gas, into more value-added materials under mild conditions and using base metals, is one of the main objectives in my research program. I will start by presenting the reactivity of a transient titanium alkylidyne (PNP)Ti≡CtBu (pincer PNP = N[2-P(CHMe2)2-4-methylphenyl]2), specifically how this species forms and engages in intermolecular C-H activation and functionalization reactions.  Such a system can dehydrogenate methane, and react with C2-C8 alkanes selectively by activating at the a- and b-positions. In the case of linear alkanes C4-C8, we only observe formation of the terminal olefin adduct.  A new catalytic cycle for transfer dehydrogenation of alkanes will be also introduced in addition to unique platforms to form kinetically stable Ti=CH2 moieties (titanium methylidene) that are relevant to our proposed catalytic cycle. I will also discuss a new transformation involving the room temperature conversion of methane to an olefin using a titanium alkylidene in cooperation with a redox-active ligand and how it compares to an electrophilic iridium system that can convert methane to ethylene with the aid of a phosphorus ylide reagent. The last component, if time permitted, will present the synthesis and reactivity of group 4 transition metal nitrides and how one can tune the basicity of the nitride ligand by shifting down the group. 

Hosted by Professor Robert Gilliard
Friday, March 5, 2021

Manipulating Main Group Elements with Transition Metal Isocyanides

Manipulating Main Group Elements with Transition Metal Isocyanides

Dr. Joshua Figueroa | University of California, San Diego |

Professor Robert Gilliard

Manipulating Main Group Elements with Transition Metal Isocyanides

 

Abstract: Transition metal complexes supported by encumbering m-terphenyl isocyanides are adept platforms for the stabilization of unusual molecular species. It has recently been reported that an iron complex featuring two m-terphenyl isocyanide ligands can support a terminal boron monfluoride (BF) ligand. This simple 10e molecule is isoelectronic to carbon monoxide, but possesses vastly different electronic structure properties. In this presentation, the electronic features of metal-coordinated BF are discussed. In addition, the reactivity properties coordinated BF are detailed, with an emphasis on reactions where BF is the primary chemical protagonist. Highlighted are a series of reactions between the BF complex and nucleophilic substrates. In certain cases, nucleophiles are shown to displace fluoride from BF to generate new boron-containing ligands. These reactions are compared and contrasted with transformations where fluoride remains bound to the boron atom. Also presented are reactions between transition metal isocyanide anions and other substrates that generate uncommon metal-bound main group species.

Dr. Joshua Figueroa | University of California, San Diego |
Hosted by Professor Robert Gilliard
Friday, February 26, 2021

Chemical Engineering Approaches for Catalytic Reduction of CO2

Chemical Engineering Approaches for Catalytic Reduction of CO2

Dr. Jingguang Chen | Columbia University

Professor Sen Zhang

Rising atmospheric concentration of CO2 is forecasted to have potentially disastrous effects on the environment from its role in global warming and ocean acidification.  Converting CO2 into valuable chemicals and fuels is one of the most practical routes for reducing CO2 emissions while fossil fuels continue to dominate the energy sector.  In the past few years our group has investigated the catalytic reduction of CO2 using a combination of kinetic studies, in situ characterization and density functional theory calculations.  In this talk we will present several examples on (1) CO2 conversion by thermocatalysis, (2) CO2 reduction by electrocatalysis, and (3) simultaneous upgrading of CO2 and shale gas. We will use these examples to highlight the importance of using fundamental chemical engineering principles to guide the selection of reaction conditions and catalyst compositions.

Dr. Jingguang Chen | Columbia University
Hosted by Professor Sen Zhang
Wednesday, February 24, 2021

Elucidating Proton-Coupled Electron Transfer Mechanisms Underpinning the Catalytic Generation of Renewable Fuels

Elucidating Proton-Coupled Electron Transfer Mechanisms Underpinning the Catalytic Generation of Renewable Fuels

Dr. Jillian Dempsey | University of North Carolina

Professor Brent Gunnoe

Elucidating Proton-Coupled Electron Transfer Mechanisms Underpinning the Catalytic Generation of Renewable Fuels

The conversion of energy-poor feedstocks like water and carbon dioxide into energy-rich fuels involves multi-electron, multi-proton transformations. In order to develop catalysts that can mediate fuel production with optimum energy efficiency, this complex proton-electron reactivity must be carefully considered. Using a combination of electrochemical methods and time-resolved spectroscopy, we have revealed new details of how molecular catalysts mediate the reduction of protons to dihydrogen and the experimental parameters that dictate catalyst kinetics and mechanism. Through these studies, we are revealing opportunities to promote, control and modulate the proton-coupled electron transfer reaction pathways of catalysts.

Dr. Jillian Dempsey | University of North Carolina
Hosted by Professor Brent Gunnoe
Friday, February 19, 2021

Prebiotic Astrochemistry in the "THz-Gap"

Prebiotic Astrochemistry in the "THz-Gap"

Dr. Susanna L. Widicus Weaver | University of Wisconsin-Madison

Professor Eric Herbst

Prebiotic Astrochemistry in the "THz-Gap"

Small reactive organic molecules are key intermediates in interstellar chemistry, leading to the formation of biologically-relevant species as stars and planets form.   These molecules are identified in space via their pure rotational spectral fingerprints in the far-IR or terahertz (THz) regime.  Despite their fundamental roles in the formation of life, many of these molecules have not been spectroscopically characterized in the laboratory, and therefore cannot be studied via observational astronomy.  The reason for this lack of fundamental laboratory information is the challenge of spectroscopy in the THz regime combined with the challenge of studying unstable molecules.  Our laboratory research involves characterization of astrophysically-relevant unstable species, including small radicals that are the products of photolysis reactions, organic ions formed via plasma discharges, and small reactive organics that form via O(1D) insertion reactions.  Our observational astronomy research seeks to examine the chemical mechanisms at play in a range of interstellar environments and to identify chemical tracers that can be used as clocks for the star-formation process.  In this seminar, I will present recent results from our laboratory and observational studies that examine prebiotic chemistry in the interstellar medium.  I will discuss these results in the broader context of my integrative research program that encompasses laboratory spectroscopy, observational astronomy, and astrochemical modeling.

Dr. Susanna L. Widicus Weaver | University of Wisconsin-Madison
Hosted by Professor Eric Herbst
Friday, February 12, 2021

No Seminar: Candidacy Exams

No Seminar: Candidacy Exams

Friday, February 5, 2021

Studying Cell Signaling in Complex Environments Using Open Microfluidics

Studying Cell Signaling in Complex Environments Using Open Microfluidics

Dr. Ashleigh Theberge | University of Washington

Professor Rebecca Pompano

Studying Cell Signaling in Complex Environments Using Open Microfluidics

Small molecule and protein signals provide a rich vocabulary for cellular communication. To better understand signaling processes in both normal and disease states, we have developed new open microfluidic platforms that accommodate the culture of multiple cell types in microfabricated compartments while allowing soluble factor signaling between cell types. Our microscale culture systems allow a 10- to 500-fold reduction in volume compared to conventional assays, enabling experiments with limited cells from patient samples. Furthermore, our devices are open, pipette accessible, interface with high resolution microscopy, and can be manufactured at scale by injection molding, increasing translation to collaborators in biological and clinical labs without chemistry and engineering expertise. Finally, this talk will highlight recent results using open microfluidic principles to develop novel strategies to 3D print hydrogels for biological and materials science applications.

Dr. Ashleigh Theberge | University of Washington
Hosted by Professor Rebecca Pompano
Friday, January 22, 2021

Fall 2020

Harnessing RNA Regulation to Direct Protein Evolution and Control Mammalian Gene Expression

Harnessing RNA Regulation to Direct Protein Evolution and Control Mammalian Gene Expression

Dr. Bryan Dickinson | University of Chicago

Professor Clifford Stains

Harnessing RNA Regulation to Direct Protein Evolution and Control Mammalian Gene Expression

 

I will present two recent technologies our group has developed that harness RNA regulation – one for basic science purposes and one for therapeutic development. First, I will describe new methods that use our RNA polymerase-based biosensors to harness evolution in order to probe the emergence of “selectivity” between biomolecular interfaces, in particular, protein-protein interactions (PPIs). Using a combination of high-throughput biochemical methods, ancestral reconstruction, and a new rapid evolution technology, we developed a model system involving the BCL-2 family of apoptotic regulatory proteins to probe fundamental evolutionary questions about PPIs and how selectivity (or not) emerges between them. In the second half of the talk, I will discuss therapeutic opportunities involving RNA regulation and “epitranscriptomics”. While RNA regulation offers exciting opportunities to create genetic therapies that are reversible and tunable, most current approaches rely on large, microbially-derived systems that pose clinical challenges. We developed the CRISPR/Cas-inspired RNA targeting system (CIRTS), a new protein engineering strategy for constructing programmable RNA regulatory systems entirely from human protein parts. The small size and human-derived nature of CIRTS provides a less-perturbative method for fundamental studies as well as a potential strategy to avoid immune issues when applied to epitranscriptomic therapies.

Dr. Bryan Dickinson | University of Chicago
Hosted by Professor Clifford Stains
Friday, November 13, 2020

Inspiration from Fluorination:  Chemical Epigenetics Approaches to Probe Molecular Recognition Events in Transcription

Inspiration from Fluorination:  Chemical Epigenetics Approaches to Probe Molecular Recognition Events in Transcription

Dr. William Pomerantz | University of Minnesota

Professor Marcos Pires

Inspiration from Fluorination:  Chemical Epigenetics Approaches to Probe Molecular Recognition Events in Transcription

 

Protein-protein interaction inhibitor discovery has proven difficult due to the large surface area and dynamic interfaces of proteins.  To facilitate the early lead discovery rate, I will first describe a rapid protein-based 19F NMR method for detecting protein-ligand interactions by screening low complexity molecules (fragments), drug-like molecules, and peptidomimetics. We have tested the sensitivity, accuracy, and speed of this method through screening libraries of small molecule fragments.  The advantages of using 3D-fragments for discovery of more selective hits for bromodomain-containing proteins will be specifically highlighted. In the second part of the talk, I will describe improvements in our method for the field of epigenetics targeting bromodomain and extra-terminal (BET) family proteins. These studies have led to a selective inhibitor for the first bromodomain of BRD4. Structure-based design has identified several new design rules for maintaining selectivity and potency.  Cellular efficacy in cancer and inflammatory model systems using this novel BRD4 inhibitor will be briefly described.  Finally, development of a new heterocyclic scaffold for the second bromodomain of BRD4 will be highlighted. The speed, ease of interpretation, and low concentration of protein needed for binding experiments affords a new method to discover and characterize both native and new ligands for bromodomains and may find utility in the study of additional epigenetic “reader” domains.

Dr. William Pomerantz | University of Minnesota
Hosted by Professor Marcos Pires
Friday, November 6, 2020

Pages