- People
- Research
- Graduate
- Undergraduate
- Prospective & Transfer Students
- General Chemistry Options
- Policies
- Tutors
- Pre-Health
- Undergraduate Advisors
- Chemistry Major
- Process for Declaring a Major, Minor, DMP, or ACS Certification
- B.A. in Chemistry
- B.S. Chemistry
- B.S. Specialization in Biochemistry
- B.S. Specialization in Chemical Education
- B.S. Specialization in Chemical Physics
- B.S. Specialization in Environmental Chemistry
- B.S. Specialization in Materials Science
- B.A./M.S. or B.S./M.S. in Chemistry ("3+1" Degree Option)
- Undergraduate Research
- Distinguished Majors Program
- Minor
- Forms
- Study Abroad
- Undergraduate FAQs
- Undergraduate Resources
- Safety
- Seminars
- Newsletter
Imaging tools have revolutionized our understanding of living systems by enabling researchers to “peer” into tissues and cells and visualize biological features in real time. While powerful, these probes have been largely confined to monitoring cellular behaviors on a microscopic level. Visualizing cellular interactions and functions across larger spatial scales—including those involved in cell migration to distant tissues, immunosurveillance, and other biological processes—remains a daunting task. My research group is developing general toolsets to image such macroscopic cellular networks and behaviors, and our efforts are focused in two areas: generating novel bioluminescent probes and developing new bioorthogonal chemistries for imaging in vivo.