- People
- Research
- Graduate
- Undergraduate
- Prospective & Transfer Students
- General Chemistry Options
- Policies
- Tutors
- Pre-Health
- Undergraduate Advisors
- Chemistry Major
- Process for Declaring a Major, Minor, DMP, or ACS Certification
- B.A. in Chemistry
- B.S. Chemistry
- B.S. Specialization in Biochemistry
- B.S. Specialization in Chemical Education
- B.S. Specialization in Chemical Physics
- B.S. Specialization in Environmental Chemistry
- B.S. Specialization in Materials Science
- B.A./M.S. or B.S./M.S. in Chemistry ("3+1" Degree Option)
- Undergraduate Research
- Distinguished Majors Program
- Minor
- Forms
- Study Abroad
- Undergraduate FAQs
- Undergraduate Resources
- Safety
- Seminars
- Newsletter
Organic micropollutants, such as pesticides and pharmaceuticals, have raised concerns about negative effects on ecosystems and human health. These compounds are introduced into water resources by human activities, and current wastewater treatment processes do not remove them. Activated carbons are the most widespread adsorbents used to remove organic pollutants from water, but they have several deficiencies, including poor removal of relatively hydrophilic micropollutants, inferior performance in the presence of naturally occurring organic matter, and energy intensive regeneration processes. I will describe polymers based on β-cyclodextrin, an inexpensive, sustainably produced derivative of glucose, that binds these emerging contaminants from water. We also recently modified our original polymer design to target perfluorinated alkyl substances such as PFOA and PFOS, which are environmentally persistent and associated with negative effects at trace concentrations.
Image
