ABSTRACT
Lipids represent a rich model system for understanding how nature maintains cellular architecture (membrane building blocks), bioenergetics (energy stores), and communication (secondary messengers) through fine adjustments in enzyme metabolism. Embedded within lipid structures is chemical information that define their metabolic fate and function. Elucidating structure-function relationships of lipids in biological systems has been traditionally challenging because of the massive structural diversity of lipids in nature and lack of tools to selectively probe their function in vivo. I will describe efforts from my group to use chemical biology and mass spectrometry to gain fundamental insights into diacylglycerol (DAG) biology and the translational potential of modulating DAG pathways in inflammation and immuno-oncology.