Chemical Biology
Hilinski
The science of organic synthesis is central to both the discovery and manufacturing of pharmaceuticals and other fine chemicals and the emergence of subdisciplines of biology that are becoming increasingly focused on phenomena at the molecular level (e.g., synthetic biology and chemical biology). Over the last half-century revolutionary advances in synthetic organic chemistry have made it possible to synthesize virtually any molecule given enough time, money, and manpower.
Grisham
Biophysical Chemistry; Magnetic Resonance Spectroscopy of Complex Biological Structures
Gahlmann
One key area in understanding bacterial cell biology is spatiotemporal phenomena: Where, when, and how do individual biomolecules act and interact to govern the overall physiology of the cell? To answer this question, we develop new high-resolution imaging methods for 3D single-molecule localization in intact bacterial cells. In particular, we combine the resolving power of the electron microscope with the single-molecule sensitivity and specificity of fluorescence-based methods. With these tools, we can localize single biomolecules in 3D space with a precision
Fraser
DuBay
The design of self-assembling nanomaterials stands as one of the great challenges in modern molecular science. The DuBay group employs theoretical and computational tools to address this challenge through investigations that lie at the intersection of soft condensed matter physics, polymer chemistry, biophysics, and nanomaterials.
Columbus
Membrane proteins facilitate the transfer of information across lipid bilayers, comprise approximately 25% of a typical proteome, and represent over half of all drug targets. The membrane proteins that mediate interactions between bacterial pathogens and hosts are of particular interest to our laboratory. Invasive bacterial pathogens are responsible for many lethal diseases and epidemics, including plague and meningitis. Although these bacteria have diverse mechanisms of cellular invasion, all of the pathways rely upon interactions between host and bacterial membrane proteins.
Cafiso
Membrane Proteins and Cell Signaling
Membranes and membrane proteins participate in some of the most important and interesting cellular processes. Energy transduction, cell signaling, membrane excitability, secretion and immune recognition are examples of a few of the processes mediated by membrane proteins. However, the molecular mechanisms by which lipids and membrane proteins accomplish these tasks are largely unknown. We primarily use EPR spectroscopy and high-resolution NMR to investigate the structure and function of membrane proteins.