Chemical Biology

Pires

The Pires lab uses synthetic chemistry as a platform to construct cell wall analogs that metabolically label live bacteria and mimic key aspects of cell wall architecture. Through this work, the interrogation of cell wall remodeling and processing in pathogenic bacteria will guide the design of next-generation antibiotics that circumvent resistance mechanisms. Moreover, we are working to establish the fundamental framework of a non-traditional antibiotic therapy based on the specific recruitment of components of the immune cells to target the destruction of pathogenic bacteria.

Pompano

Our lab develops methods based on microfluidic culture systems, bioanalytical techniques, and spatially resolved simulations to quantify the spatiotemporal dynamics of the inflammatory cascade and develop targeted therapies.  This work is part of a broad interest in the dynamics of complex biological systems.  Specifically, we study the kinetics of immunity and inflammation, and we develop chemically targeted methods to control these processes in the context of vaccination, autoimmunity, and chronic inflammatory disease.

Lazo

The pharmacological mechanism of action of small molecules and on the fundamental biological role of protein tyrosine phosphatases in disease. 


Hilinski

The science of organic synthesis is central to both the discovery and manufacturing of pharmaceuticals and other fine chemicals and the emergence of subdisciplines of biology that are becoming increasingly focused on phenomena at the molecular level (e.g., synthetic biology and chemical biology). Over the last half-century revolutionary advances in synthetic organic chemistry have made it possible to synthesize virtually any molecule given enough time, money, and manpower.

Pages

Subscribe to RSS - Chemical Biology