Jason Bates
Education
B.S., University of Kansas, Chemical Engineering, 2014
Ph.D., Purdue University, Chemical Engineering, 2019
Postdoctoral, University of Wisconsin–Madison, Chemistry, 2020–2023
Jason received his B.S. in Chemical Engineering at the University of Kansas in 2014 and his Ph.D. in Chemical Engineering at Purdue University in 2019. At Purdue, he studied the fundamental kinetic contributions of solvation and active site structure to dehydration reactions relevant to biomass upgrading using structurally well-defined Lewis acid and Brønsted acid zeolite catalysts. He was an NIH postdoctoral fellow at the University of Wisconsin–Madison in the Department of Chemistry, where he bridged the fields of thermal and electrocatalysis through studies of catalysts consisting of atomically dispersed metals incorporated into nitrogen-doped carbon.
In the Bates research group, we synthesize catalysts with well-defined structures and use quantitative kinetic measurements and characterizations of their active centers to elucidate structure–reactivity relationships. Our studies are enriched by a network of collaborations (e.g., theorists) and advanced characterization tools at national laboratories. We apply our approach to study catalytic technologies relevant for decarbonization of the energy and chemical industries.
Selected Publications
Chemical Kinetic Method for Active-Site Quantification in Fe-N-C Catalysts and Correlation with Molecular Probe and Spectroscopic Site-Counting Methods. Journal of the American Chemical Society 2023, 145, 26222–26237. Abstract
Molecular Catalyst Synthesis Strategies to Prepare Atomically Dispersed Fe-N-C Heterogeneous Catalysts. J. Am. Chem. Soc. 2022, 144, 18797–18802. Abstract
Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem. Rev. 2023, Doi: 10.1021/Acs.chemrev.2c00424. Abstract
Chemical and Electrochemical O2 Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis. J. Am. Chem. Soc. 2022, 144, 922–927. Abstract
Kinetic Effects of Molecular Clustering and Solvation by Extended Networks in Zeolite Acid Catalysis. Chem. Sci. 2021, 12, 4699–4708. Abstract
Structure and Solvation of Confined Water and Water-Ethanol Clusters within Microporous Brønsted Acids and their Effects on Ethanol Dehydration Catalysis. Chem. Sci. 2020, 11, 7102–7122. Abstract
Distinct Catalytic Reactivity of Sn Substituted in Framework Locations and at Defect Grain Boundaries in Sn-Zeolites. ACS Catal. 2019, 9, 6146–6168. Abstract