Chemical Biology


Chemical Biology; Fluorescence and Bioluminescence Imaging; Protein Engineering


The Venton group is interested in the development and characterization of analytical techniques to measure neurochemical changes. Measurements in the brain are challenging because tiny quantities of neuroactive molecules must be detected in a chemically-complex sample while disturbing the tissue as little as possible. In addition, fast time resolution measurements are needed to track the fast dynamics of neurotransmitter release and uptake. Our lab develops both electrochemical and separations methods to monitor these rapid changes in neurotransmitters in model systems.


Our lab develops methods based on microfluidic culture systems, bioanalytical techniques, and spatially resolved simulations to quantify the spatiotemporal dynamics of the inflammatory cascade and develop targeted therapies.  This work is part of a broad interest in the dynamics of complex biological systems.  Specifically, we study the kinetics of immunity and inflammation, and we develop chemically targeted methods to control these processes in the context of vaccination, autoimmunity, and chronic inflammatory disease.


Structure, Function & Evolution of Ribonucleoprotein Assemblies

The Mura lab employs experimental and computational approaches to understand the structure, function/dynamics, and evolution of RNA- and DNA-based protein assemblies. In particular, we seek a deeper understanding of Sm-based ribonucleoprotein (RNP) assemblies; what these protein/RNA complexes look like at atomic resolution (structure, such as shown below), their assembly pathways and dynamical behavior (function), and the interrelationships between Sm and Sm-like systems (evolution).


The pharmacological mechanism of action of small molecules and on the fundamental biological role of protein tyrosine phosphatases in disease. 


My laboratory aims to integrate state-of-the-art chemical biology and mass spectrometry to address fundamental challenges associated with studying the regulation of lipid metabolism and signaling in vivo. Our goal is to develop new chemical and bioanalytical methods to understand pathways of metabolic regulation and translate these findings into new therapeutic strategies for human disease. To achieve our goals, we synthesize and apply small molecule probes and inhibitors to detect and inactivate metabolic enzymes and pathways in living systems.


The science of organic synthesis is central to both the discovery and manufacturing of pharmaceuticals and other fine chemicals and the emergence of subdisciplines of biology that are becoming increasingly focused on phenomena at the molecular level (e.g., synthetic biology and chemical biology). Over the last half-century revolutionary advances in synthetic organic chemistry have made it possible to synthesize virtually any molecule given enough time, money, and manpower.


Subscribe to RSS - Chemical Biology