Featured Students

Rebecca McCloud of the Hsu Lab has been awarded the Adam Ritchie Outstanding Graduate Student for 2019.

Featured Faculty

The Thieme Chemistry Journals Award is presented every year to up-and-coming researchers worldwide who are in the early stages of

Seminars

Quantifying Oxygen’s Role in Promoting Aggressive Cancer Phenotypes With a Paper-Based 3D Culture Platform

Quantifying Oxygen’s Role in Promoting Aggressive Cancer Phenotypes With a Paper-Based 3D Culture Platform

Professor Matt Lockett | UNC Chapel Hill

Hosted by Professor Rebecca Pompano

Abstract:

Oxygen is a master regulator of many cellular processes. In tissues, gradients of oxygen and nutrients extend radially from blood vessels. The gradients in these diffusion-dominated environments increase greatly when a blood vessel is occluded, or in the case of the tumors when the rate of proliferation outpaces the rate of vascularization. The extent of hypoxia in tumors has been correlated with cancer aggressiveness, drug resistance, and invasiveness. Gradients of oxygen are also believed to direct cellular invasion from the solid tumor mass to neighboring healthy tissue.

Despite the pivotal role that oxygen plays in tumor biology, there are a limited number of in vitro assays able to quantify cellular morphology, gene- and protein-expression, or drug sensitivities in well-defined oxygen gradients. Due to the lack of experimental tools, many studies compare cellular differences at a single normoxic (21% O2) and hypoxic (~0.2% O2) condition. Monolayer cultures are also commonly used in these normoxia-hypoxia comparisons. These experiments provide a simplified view of oxygen-mediated regulation, overlooking the importance of gradients by exposing cells to a single oxygen and nutrient concentration. Evaluating a limited number of oxygen tensions has led to the inadequate interpretation that cellular responses to oxygen are a binary phenomenon, eliciting a particular hypoxic phenotype or not.

We are developing a 3D culture platform utilizing paper-based scaffolds to prepare tissue- or organ-like structures. We are able to engineer extracellular environments with specific oxygen or nutrient gradients and to tease apart the nuanced responses of cells in gradients of different steepness and shape. In this talk, I will highlight the paper-based culture platform as well as other technologies we are developing to address three long-standing questions in tumor biology. First is the role that oxygen gradients play in directing cellular movement. We have recently shown that oxygen is a chemo-attractant in diffusion-dominated environments, and are exploring what additional extracellular conditions (e.g., gradient steepness, the presence of overlapping nutrient gradients) promote this directed invasion. Second is the oxygen-mediated mechanisms through which hypoxic cells become drug resistant. In particular, we use invasion assays and tumor-like structures to evaluate the relationship between oxygen tension, active resistance (upregulation of drug efflux pumps), and passive resistance (altered metabolism or halted proliferation). Third is the relationship between hypoxia and hormone responsiveness in estrogen receptor alpha-positive (ER+) breast cancers.

Friday, February 22, 2019
Leveraging Chemistry for Biology and Therapy: New Amination Strategies to Access Biologically Important Molecules

Leveraging Chemistry for Biology and Therapy: New Amination Strategies to Access Biologically Important Molecules

Dr. Qui Wang | Duke University

Hosted by Professor Jill Venton

Abstract:

Research in the Wang group aims to answer fundamental questions that lie at the interface of chemistry and biology. This talk will present her group’s recent efforts in developing new amination chemistry and strategies toward design and discovery of novel nitrogen-containing molecules for molecular labeling, imaging tools, and new antipsychotics. 

Friday, March 1, 2019
GRADUATE RECRUITMENT WEEK: NO SEMINAR

GRADUATE RECRUITMENT WEEK: NO SEMINAR

Friday, March 22, 2019

Alumni Corner

Join our online network groups, keep us updated, and support faculty research, scholarships and fellowships. Read More...