Distinguished Majors Alum

2017

Nikki Aaron

Bachelors of Arts in Chemistry
Research with Dr. Thurl Harris

Nikki grew up in Fairfax, Virginia and attended Robinson Secondary School. She will be graduating from UVA with a Bachelor of Arts in Chemistry and a Minor in Psychology. Since August 2015, Nikki has been working in Dr. Thurl Harris’ lab in the Pharmacology Department in the School of Medicine. Dr. Harris’ lab studies how the enzymes involved in lipid metabolic pathways are regulated and how their deregulation can lead to pathological conditions such as obesity and Type II Diabetes. Over the last two years, Nikki has been exploring the stability of lipin-1, a phosphatidic acid phosphatase enzyme in the Kennedy pathway of lipid synthesis and an essential component of triacylglycerol synthesis in adipose tissue. She is working to identify critical residues that regulate lipin-1 ubiquitination and degradation by the proteasome. In light of the obesity epidemic, understanding what regulates lipin-1 stability and its ability to synthesize triacylglycerol may help to illustrate the mechanisms at play in metabolic derangements that physicians see every day. Following graduation, Nikki will be pursuing a Ph.D. in Pharmacology at Columbia University in New York City.

Maggie Daly

Bachelors of Science in Chemistry with Specialization in Biochemistry.
Research with Professor Cassandra Fraser

Maggie grew up in Yorktown, VA, but went to high school at the International School of Provence-Alpes-Cote-D’azur in Manosque, France. She is pursuing a Bachelor of Science with Specialization in Biochemistry and a Minor in Religious Studies with a concentration in Islam.

Since May 2015, Maggie has been conducting research with Dr. Cassandra Fraser in the Department of Chemistry. The Fraser Lab studies the synthesis and applications of dual-emissive polymeric materials for oxygen sensing and imaging in biomedical contexts such as tumors, wounds and the brain. The dyes are luminescent difluoroboron b-diketonates that are covalently linked or blended with a biocompatible polymer, such as poly(lactic acid), and precipitated into nanoparticles. Maggie’s projects in the Fraser Lab have a focus on the molecular design of the luminescent boron dyes, with efforts to elucidate the trends for tuning their optical properties.

Outside of the lab, Maggie is an active member of Club Swim as well as Alternative Spring Break at UVA. She has also worked as an Organic Chemistry Lab TA for the past two years. Next year, she will begin pursuing a PhD in Materials Science at the University of North Carolina at Chapel Hill.

Victoria Holt

Bachelor of Science in Chemistry
Research with Research with Professor James Landers

Victoria is from Herndon, Virginia and is studying chemistry with a minor in Russian language and literature. She began research with Dr. Landers in the fall of 2015, working with Shannon Krauss on an explosives detection project. The project is working to develop a portable device in which colorimetric reactions occur in the presence of various explosive materials. Reactions for nitrates, hydrogen peroxide, perchlorates, TNT, DNT, and tetryl have been implemented on the device. Victoria focused most of her work on the nitrates. By modifying the Griess reaction, which turns bright pink when reagents form an azo dye with nitrate, the reaction and limits of detection were optimized for use in the field.

When she isn’t working in the lab, Victoria loves to dance, read, and cook. She has been a member of University Dance Club throughout her college career, and joined University Salsa Club during her third year. She also volunteered as an elementary school tutor through Madison House and was a fundraiser for Dance Marathon for UVA Children’s Hospital.

Anna Perkins

Bachelors of Science in Chemistry
Research with Professor Jim Demas

I am from Atlanta, GA, and I went to The Lovett School. I will graduate with a BSc in Chemistry and a BA in Studio Art, painting concentration. I stated research with the Demas lab Spring 2016, focusing on fluorescence anisotropy. I have worked with the oxygen sensor Ru(bpy)3, Fraser’s promising boron complex nanoparticles, and fluorescent dye-polymer equilibria that model biological binding systems. Measuring the anisotropy of these compounds gives valuable information about the excited state(s) and information about binding. Fluorescence anisotropy is the study of emission polarization and is commonly used to measure the binding of biological equilibria. When a polarized excitation source excites a fluorophore, that fluorophore can emit in the same orientation, or it can rotationally diffuse before it has the chance to emit, thus producing an unpolarized emission. Anisotropy is a ratiometric measurement of the extent of the emitted polarization.

In addition to painting, I sing in two different groups on Grounds, the Harmonious Hoos co-ed a cappella group and the Virginia Women’s Chorus.

2016

Jack Cronk

Bachelors of Science in Chemistry with Specialization in Biochemistry
Research with Dr. Michael Brown

Jack Cronk grew up in Charlottesville, Virginia and graduated from Western Albemarle High School. He is currently pursuing a Bachelors of Science in Chemistry with a specialization in Biochemistry along with ACS certification. Jack conducts research in the School of Medicine in the laboratory of Dr. Michael Brown, Ph.D. Over the last 3 semesters, Jack has designed and utilized genetic approaches to systematically and specifically induce mutations in the genes of natural killer (NK) cell receptors. NK cells play an essential role in the innate immune response as cytotoxic lymphocytes that recognize cells infected with virus. Jack’s research investigates genetic mutations in NK cell receptors, the effects of which will ultimately be evaluated with respect to how these mutations impact receptor functionality. His thesis focuses on the validation of a meticulous experimental approach to study the immediate impact of these gene disruptions. Current and future work will involve testing his experimental design and evaluating the effects of the receptor mutations at the genomic level. Following graduation, Jack plans to continue his research at UVa, spend time with his two miniature dachshunds, Piper and Elly, and eventually pursue a Ph.D in Immunology.

Youlim Ha

Bachelors of Science in Chemistry
Research with Professor Ken Hsu

Youlim was born in Seoul, South Korea and grew up in Nanjing, China. She is graduating with the Bachelor of Science in Chemistry with the ACS certification from the University.

Youlim is doing research with Professor Ku-Lung (Ken) Hsu in the Department of Chemistry. In order to understand protein function in human disease and physiology, the lab develops novel small molecules that enable molecular analysis of proteins with mechanistically-related reactivity and activity. Her research is focused on the synthesis of new chemical probes to identify novel small molecule binding pockets present in proteins that were previously undetected due to a lack of suitable chemical biology approaches.

She received the Undergraduate Poster Session Award from the American Chemical Society for her research. She also received the Department of Chemistry Award for Excellence in Chemistry. In the fall, she is moving to London for studying Advanced Chemical Engineering.

Ellen Howerton

Bachelors of Science in Chemistry with Specialization in Biochemistry
Research with Dr. John Bushweller

Ellen Howerton grew up in Fairfax, Virginia and graduated from Thomas Jefferson High School for Science and Technology.  She will graduate from UVa with a Bachelor of Science in Chemistry with a biochemistry specialization.

Ellen joined the Bushweller lab group in the Molecular Physiology and Biological Physics department in January, 2015.  For her distinguished major, she focused on the Ets-domain family of transcription factors, which are deregulated in multiple cancers.  Many Ets-domain proteins exhibit autoinhibition, a phenomenon that occurs when a separate portion of a protein inhibits the function of another domain.  As the autoinhibitory domain is likely unique between Ets family members, it provides a promising target for therapeutics.

Outside of her studies, Ellen is a violinist and an active member of Radio Music Society, a student-run group that writes and performs string quartet covers of popular songs.  She is also a Soprano 1 with the Virginia Women’s Chorus and a member of the Washington Literary Society and Debating Union.  After graduation, Ellen will be working at the National Human Genome Research Institute at the NIH and later hopes to pursue graduate study in Public Health.

Daniel Mulrow

Bachelor of Science in Chemistry with Specialization in Chemical Physics
Research with Professor Jim Demas

Daniel grew up in Arlington, Virginia and attended Washington-Lee High School. He will be graduating UVA with a Bachelor of Science in Chemistry with a Specialization in Chemical Physics and a Bachelor of Arts in Physics.

Since August of 2013 Daniel has been working for the Demas research group. His primary focus has been using fluorescence anisotropy to determine binding constants between fluorescent dyes and polyelectrolytes. This method has been shown to allow for more types of binding constants to be measured than using other fluorescent techniques. It also has shown that more complex binding occurs when the polymer concentration is much greater than that of the fluorescent dye.

Outside of lab, Daniel is very involved with UVA’s honor fraternity Phi Sigma Pi as well as being a First Year Seminar Facilitator for the Orientation and New Student Programs office at UVA. He has also served as a physical chemistry teaching assistant for the past year. After graduation, Daniel will be pursuing a Ph.D in nuclear/physical chemistry.

2015

Joshua Corbin

Bachelors of Science in Chemistry with Specialization in Biochemistry
Research with Professor Lin Pu

Joshua attended Franklin County High School in Rocky Mount, VA. He is pursuing a B.Sc. in Chemistry with a Specialization in Biochemistry with ACS certification.

His research is in the lab of Dr. Lin Pu where he worked on a project with graduate student Shifeng Nian synthesizing a bimetallic catalyst to control the tacticity in atomic transfer radical polymerizations (ATRP) of functional alpha-olefins (e.g. acrylamide) by synthesizing a salen-derived macrocyclic ligand to coordinate a Lewis acidic metal and copper. Previous research showed that addition of a Lewis acid to Cu-mediated ATRP was promising for producing steroregular polymers. We confined the Lewis acidic center and the copper center in close proximity on a macrocyclic ligand to couple their roles in the polymerization and enhance the catalytic efficiency. Our work has provided evidence that these bimetallic catalyst systems incorporate a cooperative effect utilizing the Lewis acidic monomer activation with the copper-chlorine radical generation and stabilization process in order to provide stereocontrol and catalysis to the ATRP processes. Following the introduction of chirality into the catalyst system, the reaction of the Lewis acid coordinated monomer with the adjacent transient free radical, generated from the copper-chlorine abstraction at the polymer end, proceeds with significant stereocontrol to give the desired isotactic polymers. We are still working to optimize the degree of monomer conversion and stereocontrol.

In addition to research, Joshua has been a teaching assistant for CHEM 3410 and CHEM 3420 (physical chemistry, thermodynamics and quantum chemistry) under Dr. Dave Metcalf. Though still undecided on his particular focus, he will study organic, organometallics, or polymer chemistry in graduate school.

Andrew Lankenau

Bachelors of Science in Chemistry
Research with Professor Dean Harman

Andrew was born in Silver Spring, MD but attended Oakton High School in Vienna, VA.  He will be graduating from UVA with a Bachelors of Science in Chemistry.  Since January 2012, Andrew has worked in the research group of Dr. W. Dean Harman.

For the majority of his time in the Harman group, Andrew’s project has been to separate the two enantiomers of a chiral tungsten dearomatization core.  To do so, a tartaric acid derivative was first used to create two diastereomeric salts.  From there, the salts were separated via a finely tuned precipitation reaction and then returned to their original state by removing the asymmetric anion with a base.  This research presents a novel approach for the enantio enrichment of chiral organometallic complexes.  Andrew is in the process of submitting a first author publication of this research and hopes to have it published before he graduates.

Outside of academics, Andrew is a dedicated fan of UVA basketball and religiously attends all home games.  After graduation, Andrew will be pursuing a Ph.D in inorganic chemistry.

Nick Lee

Bachelors of Science in Chemistry with Specialization in Biochemistry
Research with Dr. Anindya Dutta

Nick Lee is a fourth-year Distinguished Major in Biochemistry from Winchester, Virginia. He conducts research in the School of Medicine in the laboratory of Anindya Dutta, M.D., Ph.D., where he investigates the function of the CRL4(Cdt2), an E3 ubiquitin ligase, in the cell cycle. The complex is responsible for marking cell cycle regulators for degradation by the proteasome. Previously, he worked to elucidate the stabilizing role that 14-3-3 exerted over Cdt2. His thesis is focused on characterizing the interaction between BRAF35 and Cdt2. BRAF35 is relatively uncharacterized in the literature, but it interacts with BRCA2, the breast cancer susceptibility protein. For his research endeavors, he has received a U.Va. Summer Scholars Award, a Harrison Undergraduate Research Award, a College Council Fall Research Grant, and a Small Research and Travel Grant, along with being a published co-author in Molecular and Cellular Biology.

Currently, he serves as the Vice Chair for Trials for the Honor Committee, the Chair of the Undergraduate Research Network, and the President of the College Science Scholars Council. Outside of those commitments, Nick has taught his own CavEd class, Current Topics in Neuroethics, served as a TA for Organic Chemistry, and is an Echols Scholar, College Science Scholar, a member of the Raven Society, and a Lawn Resident. After graduation, he will be pursuing his M.D. with the desire to become a professor of medicine.

Emily Schutzenhofer

Bachelor’s of Science in Chemistry with Specialization in Biochemistry
Research with Dr. Gary Owens

Emily M. Schutzenhofer is from Stafford, Virginia and is a graduate of Colonial Forge High School. She is an Echols Scholar double majoring in Chemistry with a Specialization in Biochemistry (including the ACS certificate) and Global Development Studies with a concentration in Global Public Health.

Emily conducts research in the lab of Dr. Gary K. Owens in the Robert M. Berne Cardiovascular Research Center. She studies the molecular mechanisms controlling the expression of an embryonic stem cell pluripotency gene, Oct4, in adult smooth muscle cells. Of particular interest to her are those mechanisms involving the vessel environmental cues typically associated with the development and progression of atherosclerotic lesions. The implications of her research include increasing understanding of the development of atherosclerosis, a condition characterized by the hardening of arteries due to the buildup of plaque. End-stage, catastrophic clinical events associated with atherosclerosis include myocardial infarction and stroke, provoked by plaque rupture and major thrombotic events. In addition, her research contributes to the field of knowledge surrounding smooth muscle cell phenotypic switching— control of which could constitute even more widely applicable clinical interventions related to cardiovascular diseases.

Outside of her academic pursuits, Emily proudly serves as the President of the National Leadership Council of the National Society of Collegiate Scholars, one of the nation’s largest and most prestigious college honor societies. She also serves on the Board of Directors for the Society. Emily is an aspiring physician and, as such, is passionate about health, wellness, and service— in addition to her research at the CVRC, she volunteers at the Charlottesville Free Clinic and Remote Area Medical Clinics in underserved regions of the state, has led the Women in Medicine Initiatives interest and advocacy group at UVA, has studied and participated in research on public health interventions in developing nations to improve chronic asthma management, and has founded and leads a service organization, the Virginia Cyber Leo Club at UVA, to help people with disabilities in the local community.