Seminars Archive

Fall 2018

Indole Alkaloids and Phenazine Antibiotics: New Platforms for Discovery

Indole Alkaloids and Phenazine Antibiotics: New Platforms for Discovery

Professor Robert Huigens | University of Florida

Professor Mike Hilinski

Abstract:

Various natural products, such as taxol, morphine and vancomycin, play a prominent role in medicine due to their ability to modulate biological targets critical to human disease. Our lab has two natural product inspired synthetic medicinal chemistry programs, driven by the structural complexity of indole alkaloids and the biological function of phenazine antibiotics. Each program aims to address major biomedical problems, including: (1) enhancing the chemical diversity of screening libraries used to drive drug discovery in high throughput screening campaigns and (2) the discovery of small molecules capable of targeting and eradicating surface-attached bacterial biofilms. Our first program aims to rapidly generate diverse and complex compounds, which can be accessed through short synthetic sequences motivated by the dramatic alteration of the inherent complex ring system of indole alkaloids. From these efforts, we have generated a library of >200 complex and diverse small molecules, which are producing an array of interesting hit compounds in diverse disease areas. Our second program aims to target bacterial biofilms, which contain specialized persister cells that are metabolically dormant and demonstrate tolerance towards every class of conventional antibiotic currently available. Biofilms are the underlying cause of chronic and recurring bacterial infections. Our lab has discovered that the marine phenazine antibiotic 2-bromo-1-hydroxyphenazine is a tunable molecular scaffold that provides access to highly potent antibacterial agents that are able to eradicate drug-resistant and antibiotic-tolerant bacterial biofilms. 

Professor Robert Huigens | University of Florida
Hosted by Professor Mike Hilinski
Friday, September 21, 2018

Graham Lecture: Increasing Access to Global Healthcare: The Medicines for All Institute

Graham Lecture: Increasing Access to Global Healthcare: The Medicines for All Institute

Professor Frank Gupton - NOTE: Lecture is on Thursday at 7:00 PM | Virginia Commonwealth University

Professor Brooks Pate

Abstract:   Access to global public healthcare is impacted by many technical, economic, and social factors. It is widely recognized that the resources required to deliver and improve global public health are currently constrained.  A powerful way to increase access is to lower the cost of products and services that have already proven to be effective.  Currently, the cost of producing a wide range of pharmaceutical products is higher than it needs to be. The mission of Medicines for All (M4All) is to transform active pharmaceutical ingredient (API) processes in order to reduce medication cost and improve patient access.  To fulfill this objective, M4ALL has developed a set of core principles for API process development, which is derived from fundamental elements of process intensification that are commonly known but often neglected. These principles have been applied to several global health drugs yielding dramatic improvements in chemical efficiency. The development of novel heterogeneous cross-coupling that support this effort will also be presented.

Professor Frank Gupton - NOTE: Lecture is on Thursday at 7:00 PM | Virginia Commonwealth University
Hosted by Professor Brooks Pate
Thursday, September 13, 2018

Reductive Carboxylation of Unsaturated Hydrocarbons with CO2

Reductive Carboxylation of Unsaturated Hydrocarbons with CO2

Professor Brian Popp | West Virginia University

Professor Mike Hilinski

ABSTRACT

Carbon dioxide is an attractive C1 synthon in chemical synthesis due to its abundance, obtainability, non-toxicity, and inherent renewability. However, it has been undervalued and underutilized for the synthetic installation of carboxyl functionality because of its unreactive nature, owing to its inherent thermodynamic stability and kinetic inertness. Traditionally the carboxyl group is accessed by organic chemists through redox manipulation and protection/deprotection reactions or through the use of strong nucleophiles that have limited functional group tolerance. By fixing carbon dioxide with unsaturated organic molecules through C–C bond formation, rapid and redox-economic synthesis of carboxylic acids and their derivatives can be realized. Nevertheless, these transformations remain rare, are poorly understood, and generally limited to more energetic alkyne substrates. The Popp Research Group uses methodological and mechanistic approaches to expand the versatility and usefulness of transition metal-catalyzed reductive olefin carboxylation. Two approaches that will be discussed in this seminar are transfer hydrometallation–carboxylation and hetero(element)carboxylation. Recent mechanistic work will be presented on an iron-catalyzed variant of the former reaction class that has revealed new details, and possibly new opportunities, for this poorly understood class of reaction. The latter manifold was only recently extended by our group to include olefins (vinyl arenes) for the first time (ACS Editors’ Choice–Org. Lett. 2016, 18, 6428). The mild method uses redox-neutral copper catalysis and a single atmosphere of CO2 to obtain boron-functionalized α-aryl carboxylic acids, including novel functionalized-NSAIDs such as bora-ibuprofen and bora-naproxen. Recent progress toward the preparation of new bora-olefin compounds, subsequent synthetic elaboration of the carbon-boron bond, and complementary experimental/computational studies to improve our mechanistic understanding of the reaction will also be presented.

Professor Brian Popp | West Virginia University
Hosted by Professor Mike Hilinski
Friday, September 7, 2018

2018

2018-19 Kick-off Seminar: A Taste of Space: New Recipes for Making Complex Interstellar Molecules

2018-19 Kick-off Seminar: A Taste of Space: New Recipes for Making Complex Interstellar Molecules

Professor Robin Garrod | UVA Department of Chemistry

Professor Eric Herbst

ABSTRACT

Interstellar space is replete with molecules, ranging from the very simple (e.g. molecular hydrogen), to more complex and exotic species such as the cyanopolyynes (e.g. HC9N). However, young star-forming regions in particular demonstrate the richest chemistry observed outside the solar system, and are host to many molecules that are familiar from the terrestrial chemistry lab, including alcohols, aldehydes, esters and ethers; it is still a matter of debate how much of this interstellar material can survive intact to the planet-formation stage and beyond. Recent millimeter-wavelength spectral observations of high-mass star-forming regions, using the new ALMA telescope, have identified a range of new, and yet more complex molecules, whose formation mechanisms are just beginning to be fully explored. Diffusive chemistry on cold dust-grain surfaces and the energetic processing of the resultant ice mantles seem to play a critical role for many.

I will outline the chemical and physical processes that take place in interstellar clouds and star-forming cores, and will discuss new astronomical observations of organic molecules. I will also show how new chemical kinetics simulations, combined with astrophysical spectral-emission models, can help us understand both the chemistry of star formation, and the laboratory experiments that aim to reproduce its conditions.

Professor Robin Garrod | UVA Department of Chemistry
Hosted by Professor Eric Herbst
Friday, August 31, 2018

Spring 2018

Phosphorus-Element Bond-Forming Reactions

Phosphorus-Element Bond-Forming Reactions

Professor Christopher Cummins | Massachusetts Institute of Technology

Professor Robert Gilliard

White phosphorus (P4) has been the traditional entry point into phosphorus chemistry. The thirteenth element to have been isolated, it can be oxidized with elemental oxygen or chlorine, or reduced in a variety of ways. We investigated its reduction using early transition metal systems and breakdown to produce complexes with terminal metal-phosphorus triple bonds. Such terminal phosphide complexes possess nucleophilic phosphorus atoms, paving the way to new phosphorus-element bonded systems. This opened the door to the study of reactive diphosphorus molecules, the naked P2 molecule being otherwise a high-temperature species. Subsequently, it proved possible to deliver P2 into organic molecules using photochemical “cracking” of white phosphorus, the P2 serving as an effective dienophile with 1,3-dienes. An alternative pathway to the generation of unsaturated, P-containing reactive intermediates is through the use of anthracene as a delivery platform as illustrated for aminophosphinidenes, the interstellar molecule HCP, and diphosphorus. The raw material serving as a phosphorus source for global agriculture is not white phosphorus, but rather apatite in phosphate rock. White phosphorus is made in the legacy “thermal process”, accounting for ca. 5% of global phosphate rock consumption but ca. 30% of the energy utilized in phosphate rock upgrading. Now we are seeking routes to value-added phosphorus chemicals that leverage the “wet process”, in which phosphate rock is treated with sulfuric acid en route to phosphoric acid and phosphate fertilizers. 

Professor Christopher Cummins | Massachusetts Institute of Technology
Hosted by Professor Robert Gilliard
Friday, April 27, 2018

Supramolecular Approaches to Advanced Functional Materials

Supramolecular Approaches to Advanced Functional Materials

Professor Davita Watkins | University of Mississippi

Professors Robert Gilliard & Jill Venton
Professor Davita Watkins | University of Mississippi
Hosted by Professors Robert Gilliard & Jill Venton
Friday, April 20, 2018

ACS Poster Session & Meeting

ACS Poster Session & Meeting

Friday, April 13, 2018

Hecht Lecture - Life 2.0: Synthetic Self-Replicating and Evolving SystemsLife 2.0: Synthetic Self-Replicating and Evolving Systems

Hecht Lecture - Life 2.0: Synthetic Self-Replicating and Evolving SystemsLife 2.0: Synthetic Self-Replicating and Evolving Systems

Professor Gerald F. Joyce | Salk Institute for Biological Studies

Professor Sid Hecht | Reception follows - Chemistry Lobby
Professor Gerald F. Joyce | Salk Institute for Biological Studies
Hosted by Professor Sid Hecht | Reception follows - Chemistry Lobby
Friday, April 6, 2018

Photoredox and Electrochemical Methods for C-N Bond Forming Reactions

Photoredox and Electrochemical Methods for C-N Bond Forming Reactions

Professor Aaron Vannucci | University of South Carolina

Professor Charlie Machan

Photoredox and Electrochemical Methods for C-N Bond Forming Reactions

C-N bonds are ubiquitous in medical, pharmaceutical, and natural products. Therefore, it is important to develop synthetic procedures that both effectively form C-N bonds and incorporate sustainable principles. These principles include the use of renewable energies sources such as sunlight, utilization of abundant transition metal catalysts, and increasing the atom economy of the reactions. Along these lines, we have utilized dual photoredox system capable of accessing diaryl amines, amines containing aliphatic groups, and tertiary amines nickel catalysis to perform aryl-amine cross-coupling reactions. Until very recently this class of C-N bond forming reactions were limited to Pd-catalyzed reactions. Our system is the first Ni-catalyzed reaction system capable of synthesizing diaryl amines, tertiary amines, and amines containing aliphatic groups. Mechanistic studies support an amine-radical-based reaction pathway that allows for the access to the range of products. Furthermore, we have developed an “anion pool” electrochemical method for the synthesis of N-substituted heterocycles. This base-free and transition-metal-free approach exhibits good atom economy and has proven widely applicable for the synthesis of substituted benzimidazoles.

Professor Aaron Vannucci | University of South Carolina
Hosted by Professor Charlie Machan
Friday, March 30, 2018

Profiling Cellular-to-Molecular Diversity Using Electrophoretic Cytometry

Profiling Cellular-to-Molecular Diversity Using Electrophoretic Cytometry

Professor Amy Herr | University of California at Berkeley

Professor James Landers
Professor Amy Herr | University of California at Berkeley
Hosted by Professor James Landers
Friday, March 23, 2018

It’s Complex: Probing Protein Interactions from Single-Molecule to Cellular Scales

It’s Complex: Probing Protein Interactions from Single-Molecule to Cellular Scales

Julea Vlassakis | Fellow, Herr Lab| University of California, Berkeley

Professor James Landers

Abstract

Biological molecules rarely act alone. Instead, molecular complexes carry out a range of cellular functions from DNA repair to cell motility and protein folding. Dysfunction of complexes is implicated in numerous diseases. For example, altered cellular distributions of actin cytoskeletal protein monomers and complexes result in highly motile and invasive cancer cells. Such dysfunction arises biochemically, biophysically, or both. Biochemical and biophysical changes occur on the length and force scales of the complexes themselves—micro/nanoscale and ultra-low forces. Microscale tools, such as size-based electrophoretic (EP) cytometry protein separations, and piconewton-scale magnetic tweezers, can measure such small size and force changes respectively.

I will describe efforts to establish and apply microscale tools to study the function of diverse protein complexes. First, I will discuss the design of single-cell EP cytometry fractionation of actin complexes from monomers. The microscale device geometry achieves rapid, arrayed on-chip sample preparation and EP fractionation without perturbing complexes. Second, I will share how magnetic tweezers reveal that tension in Rad51-DNA protein complexes drives accurate DNA damage repair processes. Finally, we will explore the future of microscale biophysical and biochemical analysis of complexes, with a focus on chaperone protein complexes responsible for protein folding, which goes awry in Alzheimer’s disease. 

Julea Vlassakis | Fellow, Herr Lab| University of California, Berkeley
Hosted by Professor James Landers
Thursday, March 22, 2018

Graduate Recruiting

Graduate Recruiting

Friday, March 16, 2018

Spring Break Ends

Spring Break Ends

Friday, March 9, 2018

Spring Break Begins

Spring Break Begins

Friday, March 2, 2018

Folding- and dynamics-based electrochemical biosensors

Folding- and dynamics-based electrochemical biosensors

Professor Rebecca Lai | University of Nebraska-Lincoln

Professor Jill Venton

This seminar will cover the recent advances in the design and fabrication of folding- and dynamics-based electrochemical biosensors. These devices, which are often termed electrochemical DNA (E-DNA), aptamer-based (E-AB), and peptide-based (E-PB) sensors, are fabricated via direct immobilization of a thiolated and methylene blue (MB)-modified oligonucleotide or peptide probe onto a gold electrode. Binding of an analyte to the probe changes its structure and/or flexibility, which, in turn, influences the electron transfer between the MB label and the interrogating electrode. These sensors are resistant to false positive signals arising from the non-specific adsorption of contaminants and perform well even when employed directly in whole blood, saliva, and other realistically complex sample matrices. Furthermore, because all of the sensing components are chemisorbed onto the electrode surface, they are readily regenerable and reusable. Our results show that many of these sensors have achieved state-of-the-art sensitivity while offering the unprecedented selectivity, reusability and operational convenience of direct electrochemical detection.

 

Professor Rebecca Lai | University of Nebraska-Lincoln
Hosted by Professor Jill Venton
Friday, February 23, 2018

Antibody affinity reagents and reproducibility: Strategies and challenges for the renewable diagnostics and therapeutics antibodies

Antibody affinity reagents and reproducibility: Strategies and challenges for the renewable diagnostics and therapeutics antibodies

Professor Bhupal Ban | UVA - Antibody Engineering & Technology Core

Professor Rebecca Pompano - *NOTE: (Dell 2 Room 100)

Learning Objectives

  •       Trends for isolation of monoclonal antibodies
  •       Current  antibody reproducibility problem in academic institute
  •       Antibody validation: Standards, policies, and practices 
  •       A new mindset for affinity application, evaluation, and authorization
  •       The advantages of recombinant antibody production methods over monoclonal and polyclonal antibody production methods.
  •       Phage display antibody production be adapted to produce the characteristic desired in applications such as multiple epitope recognition, tissues, and phenotype functional antibodies. 
  •       Learn about protein chemistry and conjugation of antibody and drug
  •       Immobilize antibody onto different polymers, nanoparticles, liposome  
Professor Bhupal Ban | UVA - Antibody Engineering & Technology Core
Hosted by Professor Rebecca Pompano - *NOTE: (Dell 2 Room 100)
Wednesday, February 21, 2018

In silico searches for (in)efficient electrocatalysts through chemical and material compound space

In silico searches for (in)efficient electrocatalysts through chemical and material compound space

Professor John Keith | University of Pittsburgh

Professor Charlie Machan

This talk will provide an overview of our group’s work using both standard and atypical high-performance computational chemistry modeling to elucidate atomic scale reaction mechanisms of catalytic reactions. I will introduce our toolkit of in silico methods for accurately modeling (electro)catalytic reactions in solvating environments. I will then present how in silico methods can be used for predictive insights into chemical and material design. The talk will then highlight our progress in modeling 1) the complex Morita-Baylis-Hillman reaction, 2) inefficient amorphous TiO2 materials as anti-corrosion coatings, and 3) biomimetic CO2 reduction mechanisms.

Professor John Keith | University of Pittsburgh
Hosted by Professor Charlie Machan
Friday, February 16, 2018

Interactions of antimicrobial and cell-penetrating peptides with lipid membranes

Interactions of antimicrobial and cell-penetrating peptides with lipid membranes

Professor Paulo Almeida | University of North Carolina at Wilmington

Professor Dave Cafiso

Antimicrobial, cytolytic, and cell-penetrating peptides, often called membrane-active peptides, belong to a variety of structural classes, including, alpha-helical, beta-sheet, unstructured, and cyclic polypeptides, among others. Those peptides were intensely studied in the 1990s and early 2000s with the hope of opening the door for urgently needed new antibiotics. For about 15 years we have studied the kinetics and thermodynamics of their interactions with lipid vesicles with the hope of understanding the mechanism of their function. In general, these peptides bind to lipid bilayers and somehow disrupt or perturb them, causing flux of ions and molecules across the membrane, and also, in some cases, translocating themselves across the membrane. In this talk, I will discuss our efforts to understand the mechanisms of these peptides and what we have learned regarding the effect of sequence on their ability to translocate across the membrane. I will conclude with the examination of a very different case, the cyclic peptide daptomycin, which is one of the few in clinical use. This peptide appears to behave very differently from all other membrane-active peptides that we have studied.

Professor Paulo Almeida | University of North Carolina at Wilmington
Hosted by Professor Dave Cafiso
Friday, February 2, 2018

Quantifying biochemistry in living cells

Quantifying biochemistry in living cells

Professor Amy Palmer | University of Colorado at Boulder

Professor Andreas Gahlmann

Increasingly, fluorescent tools are providing insight into the “dark matter” of the cellular milieu: small molecules, secondary metabolites, metals, and ions.  One of the great promises of such tools is the ability to quantify cellular signals in precise locations with high temporal resolution.  Yet this is coupled with the challenge of how to ensure that our tools are not perturbing the underlying biology and the need to systematically measure hundreds of individual cells over time.  The focus of research in the Palmer Lab is to develop fluorescent tools to illuminate and quantify biochemistry in living cells.  In addition to developing such tools, we strive to develop robust systematic analytical approaches for using sensors and fluorescence microscopy to carry out quantitative biochemistry at the single cell level.  Over the past 12 years our greatest effort has been in understanding the cell biology of zinc.  We have developed fluorescent sensors to map out the spatial distribution of zinc ions and quantify zinc dynamics in live mammalian cells.  These tools have allowed us to answer fundamental questions such as: where zinc is located in cells, how much is present in different kinds of cells, under what conditions zinc ions are dynamic, and how the zinc status of healthy cells differs from diseased cells.  Along the way, we have also established benchmark analytical approaches for using fluorescent sensors for quantitative biology and biophysics.  We have developed microfluidic cell sorting technologies to study and engineer fluorescent tools.  We have leveraged our expertise in fluorescent probes, single cell biology and live cell imaging to establish new methods for defining the complex dynamic interface between bacterial pathogens and host mammalian cells. And finally, we have started to expand our reach to develop chemical biology tools for labelling and tracking RNA in live cells.  This talk will provide a highlight of these research areas.

 

.

Professor Amy Palmer | University of Colorado at Boulder
Hosted by Professor Andreas Gahlmann
Friday, January 26, 2018

Transition metal catalyzed hydroarylation of Olefins: New catalysts for alkyl and alkenyl arenes

Transition metal catalyzed hydroarylation of Olefins: New catalysts for alkyl and alkenyl arenes

Professor Brent Gunnoe | University of Virginia

Professor Jill Venton
Professor Brent Gunnoe | University of Virginia
Hosted by Professor Jill Venton
Friday, January 19, 2018

Spring 2019

GRADUATE RECRUITMENT WEEK: NO SEMINAR

GRADUATE RECRUITMENT WEEK: NO SEMINAR

Thursday, March 22, 2018

Fall 2017

Confessions of a cunning collaborator: Strategies for sustaining a successful research agenda at a PUI

Confessions of a cunning collaborator: Strategies for sustaining a successful research agenda at a PUI

Professor Kristi Kneas | Elizabethtown College

Professor Jim Demas
Professor Kristi Kneas | Elizabethtown College
Hosted by Professor Jim Demas
Friday, November 17, 2017

From basic chemistry to new opioid biology

From basic chemistry to new opioid biology

Professor Jeff Aube | University of North Carolina, Chapel Hill

Professors Ken Hsu and John Lazo

The worldwide opioid crisis has occasioned efforts to develop new opioids for both existing uses (pain control) as well as new indications (itch, addiction). We have focused on the discovery of compounds able to selectively activate one of the two main intracellular pathways associated with the kappa opioid receptor. This type of activity, called “functional selectivity” or “ligand bias”, has the potential to segregate many of the ultimate biological effects of therapeutic opioids.

This project is an effort of a multidisciplinary, multi-institutional team led by the speaker and Professor Laura Bohn of the Scripps Research Institute.[1,2] It began with the development of a speculative library for screening against a range of potential biological targets based on a known but underexplored isoquinolinone synthesis. Applying this chemistry to library synthesis led to a hit compound that stoked our interest in biased ligand discovery, ultimately leading to the discovery of Triazole 1.1, a strongly biased KOR agonist with a fascinating in vitro and in vivo profile. These efforts and recent results will be described.

[1] Bohn, L.M.; Aubé, J. ACS Med. Chem. Lett, 2017, 8, 694–700.

[2] Brust, T. F.; Morgenweck, J.; Kim, S. A.; Rose, J. H.; Locke, J. L.; Schmid, C. L.; Zhou, L.; Stahl, E. L.; Cameron, M. D.; Scarry, S. M.; Aubé, J.; Jones, S. R.; Martin, T. J.; Bohn, L. M. Biased Agonists of the Kappa Opioid Receptor Suppress Pain and Itch Without Causing Sedation or Dysphoria. Sci. Signal. 2016, 9, ra117.

Jeffrey Aubé attended the University of Miami, where he did undergraduate research with Professor Robert Gawley (with whom he later co-authored the graduate text “Principles of Asymmetric Synthesis”, currently in its second edition). He received his Ph.D. in chemistry in 1984 from Duke University, working with Professor Steven Baldwin, and was an NIH postdoctoral fellow at Yale University with Professor Samuel Danishefsky. From 1986 until 2015, he held a faculty position in the Department of Medicinal Chemistry at the University of Kansas. In 2015, he retired from KU and moved to the University of North Carolina, where he is an Eshelman Distinguished Professor in the Division of Chemical Biology and Medicinal Chemistry. In addition to holding a joint appointment in the Department of Chemistry, Aubé is a member of the Center for Integrative Chemical Biology and Drug Discovery and the Lineberger Cancer Center.

Aubé’s research interests lie in the chemistry of heterocyclic compounds and their applications to problems in medicinal organic chemistry. The lab’s interests in bioorganic chemistry include collaborations in the area of opioid pharmacology (with Laura Bohn), steroid biosynthesis inhibitors (with Emily Scott), and in the discovery of anti-Mtb agents (with Carl Nathan). Aubé served as the principal investigator of the Chemical Methodology and Library Development Center program at Kansas as well as a specialized chemistry lab in the NIH’s Molecular Libraries Initiative.

Aubé has been honored for his research and scholarship by his receipt of awards from the American Chemical Society (including the Arthur C. Cope Scholar Award and the Midwest Award, bestowed by the St. Louis Section of the ACS) and for teaching (including the university-wide HOPE Award and the Kemper Fellowship for Teaching Excellence at KU). He is a fellow of both the American Association for the Advancement of Science and the American Chemical Society.

Professor Jeff Aube | University of North Carolina, Chapel Hill
Hosted by Professors Ken Hsu and John Lazo
Friday, November 10, 2017

Electrochemical power for future Army

Electrochemical power for future Army

Professor Cynthia Lundgren | Army Research Laboratory |

Professor Sen Zhang
Professor Cynthia Lundgren | Army Research Laboratory |
Hosted by Professor Sen Zhang
Friday, November 3, 2017

Redefining druggability using chemoproteomic platforms

Redefining druggability using chemoproteomic platforms

Professor Dan Nomura | University of California, Berkeley

Professor Ken Hsu
Professor Dan Nomura | University of California, Berkeley
Hosted by Professor Ken Hsu
Friday, October 27, 2017

A proton-coupled electron transfer viewpoint on bond activation electrocatalysis and nanocrystals

A proton-coupled electron transfer viewpoint on bond activation electrocatalysis and nanocrystals

Professor Jim Mayer | Yale University

Professor Charlie Machan
Professor Jim Mayer | Yale University
Hosted by Professor Charlie Machan
Friday, October 20, 2017

Once upon a time in Kamchatka: The extraordinary search for natural quasicrystals

Once upon a time in Kamchatka: The extraordinary search for natural quasicrystals

Professor Paul Steinhardt | Princeton University |

Professors Kateri DuBay and Jill Venton
Professor Paul Steinhardt | Princeton University |
Hosted by Professors Kateri DuBay and Jill Venton
Thursday, October 12, 2017

Assembly and disassembly of layered materials

Assembly and disassembly of layered materials

Professor Thomas Mallouk | Penn State University |

Professor Sen Zhang
Professor Thomas Mallouk | Penn State University |
Hosted by Professor Sen Zhang
Friday, October 6, 2017

Activity assisted self-assembly of colloidal particles

Activity assisted self-assembly of colloidal particles

Professor Angelo Cacciuto | Columbia University |

Professor Kateri DuBay
Professor Angelo Cacciuto | Columbia University |
Hosted by Professor Kateri DuBay
Friday, September 29, 2017

Designing nanoparticles for sustainability

Designing nanoparticles for sustainability

Professor Christy Haynes | University of Minnesota

Professor Rebecca Pompano

Engineered nanoparticles are increasingly being incorporated into devices and products across a variety of commercial sectors – this means that engineered nanoscale materials will either intentionally or unintentionally be released into the ecosystem. The long-term goal of the presented work is to understand the molecular design rules that control nanoparticle toxicity using aspects of materials science (nanoparticle design, fabrication, and modification), analytical chemistry (developing new assays to monitor nanotoxicity), and ecology (monitoring how nanoparticles enter and accumulate in the food web through bacteria and how these nanoparticles influence bacterial function). Taken together, these data suggest that careful consideration of engineered nanoparticle surface chemistry will likely allow design of safe and sustainable nanoscale materials.

Professor Christy Haynes | University of Minnesota
Hosted by Professor Rebecca Pompano
Friday, September 22, 2017

Pages