- People
- Research
- Graduate
- Undergraduate
- Prospective & Transfer Students
- General Chemistry Options
- Policies
- Tutors
- Pre-Health
- Undergraduate Advisors
- Chemistry Major
- Process for Declaring a Major, Minor, DMP, or ACS Certification
- B.A. in Chemistry
- B.S. Chemistry
- B.S. Specialization in Biochemistry
- B.S. Specialization in Chemical Education
- B.S. Specialization in Chemical Physics
- B.S. Specialization in Environmental Chemistry
- B.S. Specialization in Materials Science
- B.A./M.S. or B.S./M.S. in Chemistry ("3+1" Degree Option)
- Undergraduate Research
- Distinguished Majors Program
- Minor
- Forms
- Study Abroad
- Undergraduate FAQs
- Undergraduate Resources
- Safety
- Seminars
- Newsletter
ABSTRACT
Selective trimerization of ethylene to produce 1-hexene is a commercially practiced process that yields valuable comonomer for linear low density polyethylene production. Several years ago, ExxonMobil chemists developed a family of chromium catalysts useful for ethylene trimerization, but a mechanistic understanding of the catalysis remained elusive. This talk presents a mechanistic proposal to explain the catalytic selectivity, supported by a computational exploration of proposed cycle. Results will be discussed in terms of geometric requirements for reaction and the fundamental steps involved in catalysis.