Inorganic and Organometallic Chemistry


Organic, Polymer and Organometallic Chemistry; Asymmetric Catalysis; Chiral Sensors; Optically Active Materials


The Machan group is interested in energy-relevant catalysis, particularly at the interface of molecular electrochemistry and materials. The development of efficient and selective transformations to produce commodity chemical precursors and fuels using CO2, O2, H2, and H2O as reagents remains an ongoing challenge for the storage of electrical energy within chemical bonds. Our approach is inspired by the numerous metalloproteins capable of catalyzing kinetically challenging reactions with significant energy barriers in an efficient manner under ambient conditions.


For decades, the dearomatization of arenes has been recognized as a chemical transformation of fundamental importance. It provides the connection between this robust and abundant source of hydrocarbons and the alicyclic frameworks common to many biologically active products. Thus, dearomatization methods have become powerful tools for organic synthesis.


Research in the Fraser Lab is concerned with materials chemistry—synthesis, properties, and applications, along with environmental, health and societal impacts. While developing routes to polymeric metal complexes—well-defined hybrid inorganic-organic materials inspired by metalloproteins, combining coordination chemistry and controlled polymerization—we made two important discoveries involving luminescent boron complexes.  Difluoroboron β-diketonate dyes show intense fluorescence, 2-photon absorption, and environment sensitive emission.
Subscribe to RSS - Inorganic and Organometallic Chemistry