Bioanalytical Chemistry

Gahlmann

One key area in understanding bacterial cell biology is spatiotemporal phenomena: Wherewhen, and how do individual biomolecules act and interact to govern the overall physiology of the cell?  To answer this question, we develop new high-resolution imaging methods for 3D single-molecule localization in intact bacterial cells.  In particular, we combine the resolving power of the electron microscope with the single-molecule sensitivity and specificity of fluorescence-based methods.  With these tools, we can localize single biomolecules in 3D space with a precision

Fraser

Research in the Fraser Lab is concerned with materials chemistry—synthesis, properties, and applications, along with environmental, health and societal impacts. While developing routes to polymeric metal complexes—well-defined hybrid inorganic-organic materials inspired by metalloproteins, combining coordination chemistry and controlled polymerization—we made two important discoveries involving luminescent boron complexes.  Difluoroboron β-diketonate dyes show intense fluorescence, 2-photon absorption, and environment sensitive emission.

Pages

Subscribe to RSS - Bioanalytical Chemistry