Bioanalytical Chemistry


Chemical Biology; Fluorescence and Bioluminescence Imaging; Protein Engineering


The Venton group is interested in the development and characterization of analytical techniques to measure neurochemical changes. Measurements in the brain are challenging because tiny quantities of neuroactive molecules must be detected in a chemically-complex sample while disturbing the tissue as little as possible. In addition, fast time resolution measurements are needed to track the fast dynamics of neurotransmitter release and uptake. Our lab develops both electrochemical and separations methods to monitor these rapid changes in neurotransmitters in model systems.


Organic, Polymer and Organometallic Chemistry; Asymmetric Catalysis; Chiral Sensors; Optically Active Materials


Our lab develops methods based on microfluidic culture systems, bioanalytical techniques, and spatially resolved simulations to quantify the spatiotemporal dynamics of the inflammatory cascade and develop targeted therapies.  This work is part of a broad interest in the dynamics of complex biological systems.  Specifically, we study the kinetics of immunity and inflammation, and we develop chemically targeted methods to control these processes in the context of vaccination, autoimmunity, and chronic inflammatory disease.


My laboratory aims to integrate state-of-the-art chemical biology and mass spectrometry to address fundamental challenges associated with studying the regulation of lipid metabolism and signaling in vivo. Our goal is to develop new chemical and bioanalytical methods to understand pathways of metabolic regulation and translate these findings into new therapeutic strategies for human disease. To achieve our goals, we synthesize and apply small molecule probes and inhibitors to detect and inactivate metabolic enzymes and pathways in living systems.


One key area in understanding bacterial cell biology is spatiotemporal phenomena: Wherewhen, and how do individual biomolecules act and interact to govern the overall physiology of the cell?  To answer this question, we develop new high-resolution imaging methods for 3D single-molecule localization in intact bacterial cells.  In particular, we combine the resolving power of the electron microscope with the single-molecule sensitivity and specificity of fluorescence-based methods.  With these tools, we can localize single biomolecules in 3D space with a precision


Subscribe to RSS - Bioanalytical Chemistry