2017

Rohlfing

Dr. Rohlfing is the division director of the Chemical Sciences, Geosciences and Biosciences Division in the Office of Basic Energy Sciences (BES), Office of Science, U.S. Department of Energy. He joined BES in 1997 and served as program manager for the Atomic, Molecular and Optical Sciences program from 2000 to 2003 and as team leader for Fundamental Interactions from 2003 until October 2006, when he became division director. Dr. Rohlfing received his B.S. in Chemistry from the University of Virginia in 1977 and his Ph.D. in Physical Chemistry from Princeton University in 1982.

Rojas

Professor Rojas earned his B.A. from the University of Virginia in 1989, where he did research with Ralph O. Allen on neutron activation analysis of archaeological artifacts. He received a Ph.D. in organic chemistry from Indiana University, working with David R. Williams. Following a postdoc with Julius Rebek at both MIT and The Scripps Research Institute, Professor Rojas joined the faculty at Barnard College, a liberal arts college for women in New York City.

Pollok

Brian Pollok, Ph.D., is Life Technologies’ Chief Scientific Officer and Head of Global Science & Innovation based in Carlsbad, CA. He oversees the allocation of more than $350M in R&D funds annually, which has yielded innovative new products in the areas of DNA sequencing, cell analysis, and molecular biology. Dr. Pollok has been with Life Tech since 2003, previously serving as CSO and Head of Global R&D for Invitrogen, and as VP of R&D for the company’s Discovery Sciences unit in Madison, WI.

Love

Professor Love is an assistant professor in chemical engineering at MIT. He is also an associate member at the Eli and Edythe L. Broad Institute, and associate faculty at the Ragon Institute of MGH, MIT, and Harvard. He was named a Dana Scholar for Human Immunology and a Keck Distinguished Young Scholar in Medical Research in 2009.

Ferenc

After graduating from UVa with a B.S in Chemistry, Christopher Ferenc received his law degree from Seton Hall University School of Law, in Newark, NJ. His background in chemistry motivated him to pursue a career in the field of intellectual property law. His professional experience in this field includes interning with a U.S. Magistrate Judge and serving as legal support staff for a U.S. Congressional Committee. Currently, he is employed as a Patent Attorney in Washington, D.C.

Dowd

Professor Dowd earned her B.A. degree from the University of Virginia and her Ph.D. in Medicinal Chemistry from Virginia Commonwealth University (working with Richard Glennon). Following postdoctoral work at the University of Pennsylvania (with Irwin Chaiken), she joined the NIH where she directed a synthetic chemistry group finding novel small molecules against Mycobacterium tuberculosis.

Crews

Professor Crews earned his Chemistry B.A. at the University of Virginia in 1986. He then studied in Germany at the University Tübingen with a German Academic Exchange Service (DAAD) fellowship. He earned his Ph.D. in Biochemistry at Harvard University in 1993. After a postdoctoral fellowship with Stuart Schreiber at Harvard he joined the Yale Molecular, Cellular, and Developmental Biology Department faculty.

Collins

Dr. Collins earned a B.S. in Chemistry at the University of Virginia in 1970 (mentor Carl Trindle). He went on to attain a Ph.D. in physical chemistry at Yale University in 1974. He then  enrolled in medical school at the University of North Carolina at Chapel Hill, earning there an M.D. in 1977. rom 1978 to 1981, Dr. Collins served a residency and chief residency in internal medicine at North Carolina Memorial Hospital in Chapel Hill. He then returned to Yale, where he was named a Fellow in Human Genetics at the medical school from 1981 to 1984.

Perkins

I am from Atlanta, GA, and I went to The Lovett School. I will graduate with a BSc in Chemistry and a BA in Studio Art, painting concentration. I stated research with the Demas lab Spring 2016, focusing on fluorescence anisotropy. I have worked with the oxygen sensor Ru(bpy)3, Fraser’s promising boron complex nanoparticles, and fluorescent dye-polymer equilibria that model biological binding systems. Measuring the anisotropy of these compounds gives valuable information about the excited state(s) and information about binding.

Daly

Maggie grew up in Yorktown, VA, but went to high school at the International School of Provence-Alpes-Cote-D’azur in Manosque, France. She is pursuing a Bachelor of Science with Specialization in Biochemistry and a Minor in Religious Studies with a concentration in Islam.

Pages

Subscribe to RSS - 2017